
Registration No: 170170725 The University of Sheffield
 Electrical and Electronic Engineering

Neil Powell 15/11/2017

Digital Logic Circuits: Design with Field
Programmable Gate Arrays

Digital Logic Circuits: Design with FPGAs

1

1 Contents

1 Contents .. 1

2 Introduction .. 2

3 Background ... 2

3.1 Top Down Design .. 3

3.2 Bottom Up Implementation .. 3

3.3 Simulation ... 4

3.4 Synthesis ... 4

3.5 Hardware Testing .. 5

4 Theory ... 5

4.1 2 Bit Adder and 3 Bit Register – Macro Design Level .. 5

4.2 2 Bit Adder Macro ... 6

4.3 Full Adder – Micro Level Design .. 6

4.4 3 Bit Register – Micro Level Design ... 8

5 Method and Results .. 8

6 Discussion .. 8

7 Conclusion ... 10

8 References .. 10

9 Appendices .. 11

9.1 Full Adder Test Bench ... 11

9.2 3 Bit Register Test Bench .. 12

9.3 2 Bit Adder with 3 Bit Register Test Bench ... 13

Digital Logic Circuits: Design with FPGAs

2

2 Introduction

The use of Field Programmable Gate Arrays (FPGAs) in industry has increased in recent years due to

decreases in package cost and improvements in device functionality (low power devices, built-in

microprocessors, etc.) [1]. FPGAs provide a set of reconfigurable logic elements that can be

programmed via Hardware Description Language (HDL) and synthesis tools [2]; this allows for rapid

prototyping and release of custom logic circuits in low or medium volume applications where the

cost of developing Application Specific Integrated Circuits (ASICs) is unjustifiable [1] [2]. As FPGAs are

reconfigurable, hardware bug fixes and upgrades can be applied to products remotely [1]. FPGAs can

also be used to significantly reduce ASIC development costs as designs can be iteratively developed

and tested quickly and without the production of many expensive ASIC prototypes.

The aim of the Digital Logic Circuits experiment was to implement and test a 2-bit binary adder on a

Xilinix NEXSYS 4 development board using the Xilinix ISE design and synthesis tools. Top Down

Design was used to outline the specification of the adder; Bottom Up Implementation was then used

to build the adder using low level logic gates (AND, OR, XOR). At each stage simulation tools were

used to verify the operation of the logic circuit.

3 Background

The process of designing and implementing logic circuits with FPGAs involves a series of steps to

ensure the design is as effective, reusable, reliable and maintainable as possible. Figure 3.1 shows a

diagram of these operations. Top Down Design is used to explicitly specify the overall operation of

the circuit before defining the lower level blocks required to implement the design. Bottom up

implementation is then used to implement small sections of the design in the micro scale before

connecting them in the macro scale. At each stage of implementation, simulation is used to verify

the operation of each logic macro. Finally, synthesis tools are used to convert schematics and HDL

into file used to configure the FPGA. This section aims to give a brief explanation of each of these

processes.

Figure 3.1: Logic Circuit Design Process for FPGAs

Digital Logic Circuits: Design with FPGAs

3

3.1 Top Down Design

Top Down Design is the process of methodically breaking a design problem down into its constituent

parts, from the macro scale to the micro scale [2]. Designers start by defining the overall operation

of the system [3], this involves defining the inputs and outputs as well as the transformation that is

performed from input to output. This macro level design is then decomposed into progressively

smaller chunks (micro level); this helps partition the design into sections that only perform one task,

making implementation easier [2].

The outcome is a hierarchical arrangement that is easy to comprehend as each individual section is

very simple [2]. This partitioned design also has increased reusability and maintainability; lower level

sections of the design can be used in subsequent projects and bug fixes at the lower level are

prevented from affecting higher level sections. A Top Down Design methodology makes the

implementation of logic circuits with several million gates possible [2]. Figure 3.2 shows an example

Top Down Design flow.

3.2 Bottom Up Implementation

Following on from Top Down Design, Bottom Up Implementation can be used to generate the files

required to program the FPGA. HDL or schematics are produced for the micro level sections of the

design and fully tested using simulations (see section 3.3) [1]. When the operation of these micro

level designs has been verified, schematics or HDL files are produced that connected these micro

level designs together. Again, simulations are then used to verify the operation of this higher-level

section. This process is repeated until the macro design level is implemented.

Bottom Up Implementation produces more efficient and reliable design implementations; each

section is inherently simple and thus can be optimised effectively [2]. These simple sections can then

be brought together to produce a complex system. Effectively it allows the thought processes of

implementation to be broken down so that the engineer can focus on implementation of each

section of the design individually. Figure 3.3 shows an example Bottom Up Implementation flow.

Figure 3.2: Example Top Down Design Flow

Digital Logic Circuits: Design with FPGAs

4

3.3 Simulation

Once implementation of a design level has been completed, simulations are performed to verify that

the implemented logic functions correctly. Test benches are generated using HDL, this allows

simulated signals to be fed into the implemented logic circuit; the output at each input combination

is then graphed on a timing diagram [2]. The timing diagram can then be used to produce a truth

table for the logic circuit.

Bottom Up Implementation allows each level to be verified by simulation. This is particularly

important when implementing large designs which are difficult to completely verify at the macro

level [2]. Lower level sections can be exhaustively tested to give a high level of confidence that the

top-level design functions correctly [2].

Simulations also make the process of hardware testing (see section 3.5) much easier. The

implemented logic circuit can be virtually tested, removing the effects of issues with the hardware

used to operate the FPGA. Thus, when the physical hardware is tested, the operation of the logic

circuit inside the FPGA can be removed as a potential source of issues. As simulations can consider

hardware delays [2] (setup time, hold time, propagation delay), the output of the logic circuit can be

verified to a very high level of confidence.

3.4 Synthesis

Once a design has been fully implemented and verified it can be converted into a set of optimal

Boolean equations that fit with the technology inside the FPGA being used [2]. This process is known

as design synthesis. The behavioural description outlined in the design HDL or Schematic is

converted to a gate-level logic circuit which can be programmed onto the FPGA [2]. During the

conversion unnecessary logic is removed by the synthesis tool and the logic layout is optimised to

ensure the resultant hardware will meet speed requirements [2].

Figure 3.3: Example Bottom Up Implementation Flow

Digital Logic Circuits: Design with FPGAs

5

3.5 Hardware Testing

Once a design has been synthesized the physical FPGA being used in the end system can be

programmed with the logic circuit. Hardware testing allows the engineer to verify that the FPGA is

operating correctly at the required clock speeds as well as giving information on FPGA power draw

and dissipation [2]. Issues with cross talk between output lines from the FPGA can also be found

during this stage [2]. Ultimately the Hardware Testing stage ensures that the FPGA and logic design

will function correctly when connected to the desired application. Depending upon the application,

development boards may be used to complete Hardware Testing on the design, an example FPGA

development board is shown in Figure 3.4.

4 Theory

A 2 Bit Binary Adder connected to a 3 Bit Register was implemented to satisfy the requirements of

the design problem. Top Down Design was used to split the Adder and Register into their simpler

constituent parts. The 2 Bit Binary Adder was composed of two chained full adders. The 3 Bit

Register was composed of 3 common clocked D Flip Flops. The following section aims to explain the

operation of each design level and justify any design decisions made.

4.1 2 Bit Adder and 3 Bit Register – Macro Design Level

Using schematic capture a 2 Bit Binary Adder was connected to a Synchronous 3 Bit Register. As the

2 Bit Binary adder uses combinational logic the 3 Bit Register was added to store the calculated

binary value; allowing the calculated value to be viewed after the input binary values have changed

on the output pins of the Register. A 3 Bit Register was used to accommodate all possible output

values of the 2 Bit Adder. As the Carry In input of the 2 Bit Adder was unused it was grounded to

prevent input floating affecting the Adder output value. Figure 4.1 shows the Schematic of the 2 Bit

Adder and 3 Bit Register combination generated using KiCAD [4]. Figure 4.2 shows the Truth Table of

the 2 Bit Binary Adder and 3 Bit Register combination; this truth table assumes that the register is

clocked after the setup, hold and propagation delays of the 2 Bit Adder have elapsed.

Figure 3.4: Terasic DE0 Nano Altera Cyclone FPGA Development Board

Digital Logic Circuits: Design with FPGAs

6

4.2 2 Bit Adder Macro

The 2 Bit Adder was composed of two full adders in a ripple carry adder configuration. The use of full

adders allowed for carry bits to be accounted for. The Carry Out of one full adder was connected to

the Carry in of the next full adder. Figure 4.3 shows the 2 Bit Adder schematic, produced using KiCAD

[4].

4.3 Full Adder – Micro Level Design

Initially, the full adder was composed of AND, XOR and OR gates. This provided a functional

combination logic circuit that could add 3 Bits (ain, bin, c_in) and provide a sum and carry bit as

output. As discussed in section 4.2, two of these full adders were chained together to produce the 2

Bit Binary Adder macro. A schematic for this design produced in KiCAD [4] can be seen in Figure 4.4.

A further design was then implemented solely using Multiplexers. A schematic for this design

produced in KiCAD [4] can be seen in Figure 4.5. The Truth Table for the Full Adder can be seen in

Figure 4.6.

Figure 4.1: 2 Bit Binary Adder and 3 Bit Register Schematic (Generated using KiCAD)

Figure 4.2: 2 Bit Binary Adder and 3 Bit Register Truth Table

Figure 4.3: Schematic of 2 Bit Binary Adder composed of Full Adders (Generated using KiCAD)

Digital Logic Circuits: Design with FPGAs

7

Figure 4.4: Full Adder Schematic (Generated using KiCAD)

Figure 4.5: Multiplexer Full Adder Schematic (Generated in KiCAD)

Figure 4.6: Full Adder Truth Table

Digital Logic Circuits: Design with FPGAs

8

4.4 3 Bit Register – Micro Level Design

The 3 Bit Register was produced using 3 D Flip Flops with a common synchronous clock. The

synchronous clock ensures that all three Flip Flops will store their data at the same time; this

prevents the incorrect value being stored if the outputs of the full adder do not all update at the

same time. A schematic of the 3 Bit Register generated in KiCAD [4] can be seen in Figure 4.7. The

Truth Table for a D Flip Flop can be seen in Figure 4.8.

5 Method and Results

The implemented design fulfilled all requirements of the design problem when tested on the Xilinix

NEXYS 4 FPGA development board. Due to the nature of the lab session, this method and results

section will contain no further information.

6 Discussion

To verify that the implemented design was operating to the specification of the design problem,

several Verilog test benches were created. Test benches are Verilog modules that instantiate the

macro to be tested and then record the output of the macro for different simulated input patterns

[2]. Figure 6.1 shows the input patterns for each test bench used in the design implementation.

Figure 4.7: 3 Bit Register Schematic (Generated in KiCAD)

Figure 4.8: D Flip Flop Truth Table

Figure 6.1: 2 Bit Adder with 3 Bit Register Verilog Test Bench Patterns

Digital Logic Circuits: Design with FPGAs

9

An exhaustive test bench was used for the Full Adder macro, this means every possible input

combination was tested and the corresponding output was verified against a hand drawn Truth

Table. A similar method was used for testing the 3 Bit Register, however, only certain input

combinations were clocked into the Register. This verified that the Register would only store new

information on the rising edge of the clock.

Exhaustive testing of macros provides complete certainty that the macro is functional. As all input

combinations have been tested and verified, ignoring the affects of hazards (bugs in operation due

to hardware timings delays), there are no bugs in the logic circuit of the macro. Due to every input

combination being tested, exhaustive testing is inefficient at top design levels due to the number of

inputs the top design may have [2]. However, using exhaustive testing at micro design levels means

a high level of confidence can be placed in the top-level design, even if it is not exhaustively tested

[2].

The top-level design (2 Bit Adder with 3 Bit Register) test pattern was selected to ensure each

input/output (IO) pin was toggled (turned from 1 to 0 or 0 to 1) at least once. This verifies the

connections between the macros [2]. As exhaustive testing was used on the low-level macros (Full

Adder, 3 Bit Register) that make up the top-level design, only limited testing was required to verify

the designs operation to a high level of confidence. All test bench code can be viewed in the

Appendices (section 9).

The use of Verilog test benches aide’s regression testing (retesting implemented logic circuits after

changes have been made) as the same test bench can be used to verify the operation of the updated

macro. Effectively the test bench acts as a standard to which the macro must comply.

It is evident that if implemented using standard logic Integrated Circuits (ICs), the logic gate design

for the Full Adder would be inefficient. Use of universal NAND and NOR gates to form the gates

shown in the design from section 4.3 would optimise design cost by requiring less ICs overall to

implement the logic circuit. The secondary Multiplexer based Full Adder design would also serve as a

cost optimisation as it could be implemented with a single Dual 4 to 1 Multiplexer IC and an Inverter.

As this current design is being tested on an FPGA this factor matters less as the synthesis tool

automatically finds the optimal implementation of the logic.

Use of a Top Down Design methodology splits the overall design into a tree of macros, each at

different levels of design abstraction [2]. Macros allow sections of HDL or Logic Schematics to be

easily reused in other projects, further saving development time. Macros also decouple the top-level

design from the lower level logic circuits, allowing for bug fixes to be applied without affecting the

overall functionality of the system in a negative manner. The simplicity induced by a Top Down

Design makes for a more reliable and maintainable implementation. The engineer can focus on each

small section of the design individually, improving design efficiency [2]. Top Down Design also makes

understanding the overall operation of the design easier as it is described as a set of connected

structures at the top design level.

Ultimately, this experiment highlights the advantages of rapid prototyping and development with

FPGA technology. The process is much faster than typical design methods for custom logic circuits

[1] due to the ease of describing logic circuits behaviourally. As FPGA’s are infinitely reconfigurable

(within a reasonable lifetime) the speed of development can be further increased [1] as changes to

the design can be tested immediately rather than waiting for a costly prototype to be manufactured.

This all contributes to an overall reduction in cost of custom logic circuit development, whether the

final implementation uses an FPGA or an ASIC.

Digital Logic Circuits: Design with FPGAs

10

As FPGA design tools inherently support the Top Down Design Methodology, support throughout a

logic circuit lifetime is also made easier; changes can be made at micro design levels without

affecting the overall operation of the logic circuit due to the use of macros at the top design level. As

discussed previously, standard macros from previous projects can also be used to speed up the

design process.

7 Conclusion

In conclusion, rapid prototyping custom logic circuits with FPGAs provides many benefits that are

attractive to modern companies that are largely focused on reduction of time to market [1]. The

reconfigurability of FPGAs allows for an efficient and effective iterative process of development [1]

where changes to the logic circuit can be implemented and tested very quickly. Ultimately this

reduces the overall cost of development, whether the final design is implemented using an FPGA or

ASIC.

The use of Top Down Design methodologies adds to this speed and efficiency by simplifying designs

into a hierarchical tree [2]. This hierarchical structure allows for easy implementation and testing of

macros at the low level, providing a high level of confidence in the top-level design even if it cannot

be exhaustively tested [2]. Changes can also be applied at the micro-level without affecting the

operation of the logic circuit at the top-level, improving the ease of support through the logic circuits

lifetime.

Finally, the implementation developed during this experiment was fully successful in meeting the

requirements of the original design problem. The Top Down Design methodology used allowed for

exhaustive testing of the low-level designs; consequently, high levels of confidence could be placed

in the top-level design despite the relatively short amount of testing it was subjected to.

Additionally, the simplicity provided by the Top Down Design methodology lead to a much easier

development process. However, the implemented design could have been improved by using a

universal logic solution for the Full Adder, as shown in the secondary implementation of the Full

Adder using Multiplexers. This reduces cost if the final design is implemented using Integrated

Circuits.

8 References

[1] P. Horowitz and W. Hill, The Art of Electronics, 3 ed., New York, NY: Cambridge University Press,

2015, pp. 782, 775, 776.

[2] M. D. Ciletti, Advanced Digital Design with the Verilog HDL, 2 ed., Upper Saddle River, NJ:

Pearson, 2011, pp. 10, 109, 466, 467, 4, 6, 8, 121.

[3] M. M. Mano and M. D. Ciletti, Digital Design, 4 ed., Upper Saddle River, NJ: Pearson, 2006, p.

161.

[4] J.-P. Charras, D. Hollenbeck and W. Stambaugh, “KiCAD EDA,” KiCAD, August 2017. [Online].

Available: http://kicad-pcb.org/.

Digital Logic Circuits: Design with FPGAs

11

9 Appendices

9.1 Full Adder Test Bench

// Verilog test fixture created from schematic U:\Electrical and Electronic

Engineering\Year One\EEE119\DLC Lab\myadder\my_fa.sch - Wed Nov 08 09:40:17

2017

`timescale 1ns / 1ps

module my_fa_my_fa_sch_tb();

// Inputs

 reg bin;

 reg ain;

 reg c_in;

// Output

 wire sum;

 wire c_out;

// Bidirs

// Instantiate the UUT

 my_fa UUT (

 .bin(bin),

 .ain(ain),

 .c_in(c_in),

 .sum(sum),

 .c_out(c_out)

);

// Initialize Inputs

// `ifdef auto_init

 initial begin

 bin = 0; ain = 0; c_in = 0;

// `endif

 //Add Stimulus

 #10 ain = 0; bin = 0; c_in = 1;

 #10 ain = 0; bin = 1; c_in = 0;

 #10 ain = 0; bin = 1; c_in = 1;

 #10 ain = 1; bin = 0; c_in = 0;

 #10 ain = 1; bin = 0; c_in = 1;

 #10 ain = 1; bin = 1; c_in = 0;

 #10 ain = 1; bin = 1; c_in = 1;

 end

endmodule

Digital Logic Circuits: Design with FPGAs

12

9.2 3 Bit Register Test Bench

// Verilog test fixture created from schematic U:\Electrical and Electronic

Engineering\Year One\EEE119\DLC Lab\myadder\my_reg.sch - Wed Nov 08

10:26:45 2017

`timescale 1ns / 1ps

module my_reg_my_reg_sch_tb();

// Inputs

 reg my_clk;

 reg d1;

 reg d2;

 reg d3;

// Output

 wire q1;

 wire q2;

 wire q3;

// Bidirs

// Instantiate the UUT

 my_reg UUT (

 .my_clk(my_clk),

 .d1(d1),

 .q1(q1),

 .d2(d2),

 .q2(q2),

 .d3(d3),

 .q3(q3)

);

// Initialize Inputs

// `ifdef auto_init

 initial begin

 my_clk = 0;

 d1 = 0;

 d2 = 0;

 d3 = 0;

 //Applying Stimulus

 #100 d3 = 0; d2 = 0; d1 = 1;

 #100 d3 = 0; d2 = 1; d1 = 0;

 #100 d3 = 0; d2 = 1; d1 = 1;

 #50 my_clk = 1;

 #50 d3 = 1; d2 = 0; d1 = 0; my_clk = 0;

 #100 d3 = 1; d2 = 0; d1 = 1;

 #50 my_clk = 1;

 #50 d3 = 1; d2 = 1; d1 = 0; my_clk = 0;

 #50 my_clk = 1;

 #50 d3 = 1; d2 = 1; d1 = 1; my_clk = 0;

 end

// `endif

endmodule

Digital Logic Circuits: Design with FPGAs

13

9.3 2 Bit Adder with 3 Bit Register Test Bench

// Verilog test fixture created from schematic U:\Electrical and Electronic

Engineering\Year One\EEE119\DLC Lab\myadder\sync_adder.sch - Wed Nov 08

11:05:51 2017

`timescale 1ns / 1ps

module sync_adder_sync_adder_sch_tb();

// Inputs

 reg a1;

 reg b1;

 reg b0;

 reg a0;

 reg my_clk;

// Output

 wire s0;

 wire s1;

 wire c_out;

// Bidirs

// Instantiate the UUT

 sync_adder UUT (

 .a1(a1),

 .b1(b1),

 .b0(b0),

 .a0(a0),

 .my_clk(my_clk),

 .s0(s0),

 .s1(s1),

 .c_out(c_out)

);

// Initialize Inputs

// `ifdef auto_init

 initial begin

 a1 = 0;

 b1 = 0;

 b0 = 0;

 a0 = 0;

 my_clk = 0;

 //Applying Stimulus

 #100 a1 = 0; a0 = 1; b1 = 1; b0 = 0;

 #50 my_clk = 1;

 #50 a1 = 1; a0 = 0; b1 = 0; b0 = 1; my_clk = 0;

 #50 my_clk = 1;

 #50 a1 = 1; a0 = 1; b1 = 1; b0 = 1; my_clk = 0;

 #50 my_clk = 1;

 #50 my_clk = 0;

 end

// `endif

endmodule

